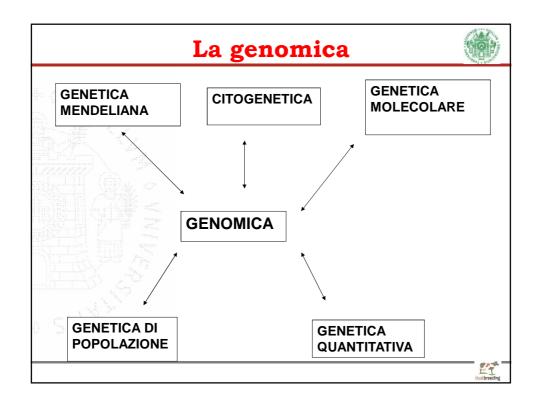
Il progetto DUAL BREEDING Le 16 razze a duplice attitudine, un patrimonio di biodiversità



Potenzialità delle informazioni genomiche per le razze locali a duplice attitudine

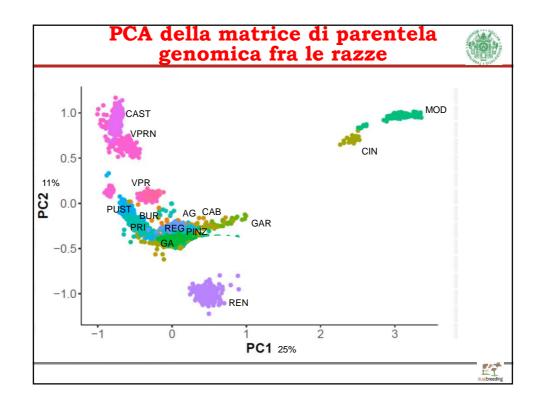
Nicolò Pietro Paolo Macciotta, Alberto Cesarani, Corrado Dimauro Dipartimento di Agraria, Università degli Studi di Sassari

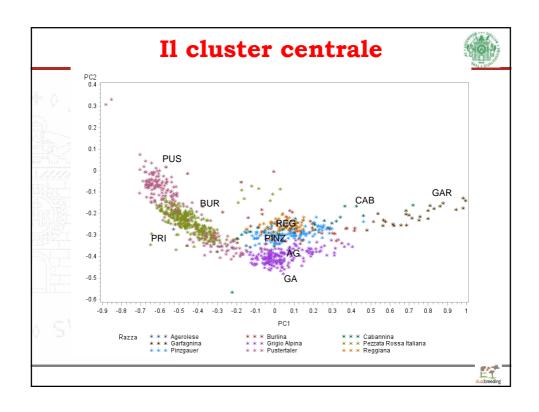
Fieragricola Verona 31/01/2020

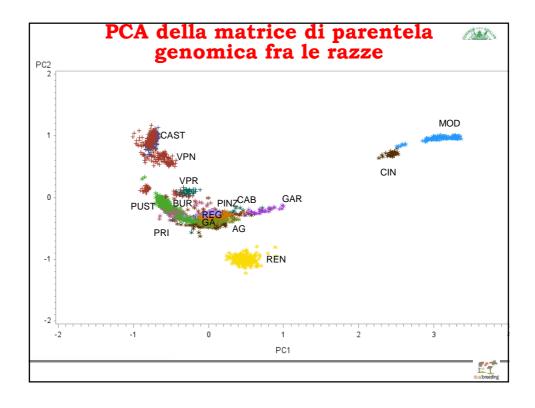
La genomica nelle razze a duplice attitudine

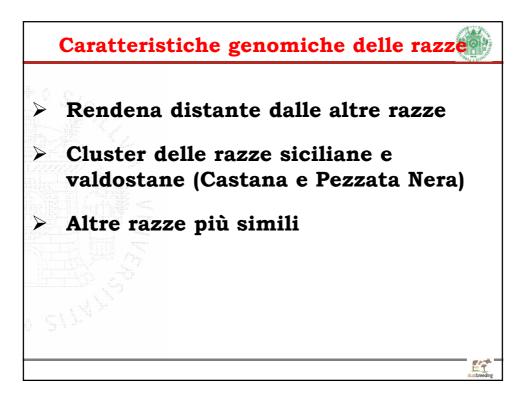
- > Selezione genomica
- Studio della biodiversità
- Controllo parentela
- Ricerca delle basi genetiche della resilienza
- > Caratterizzazione delle produzioni

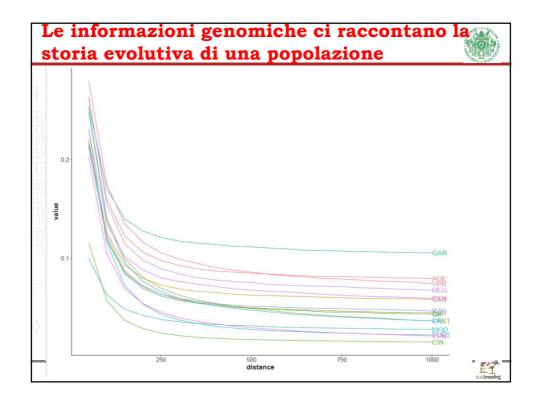
Razza	Animali	
Agerolese	21	Apr + 217Ar
Burlina	60	
Cabannina	33	
Cinisara	200	
Garfagnina	32	2303 animali
Grigio Alpina	181	13 razze
Modicana	244	
Pezzata Rossa Italiana	356	
Pinzgauer	85	
Pustertaler/Barà	201	
Reggiana	48	
Rendena	225	
Valdostana Castana	231	
Valdostana Pezzata Nera	354	## ## ## ## ## ## ## ## ## ## ## ## ##
Valdostana Pezzata Rossa	32	dual breeding

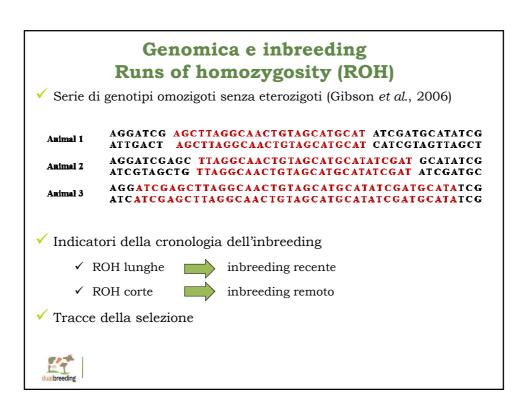

Genotipizzazione

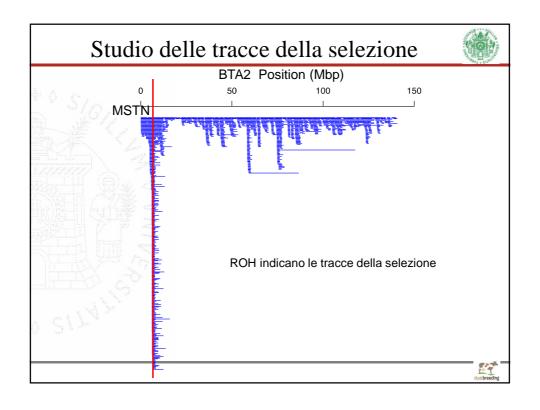


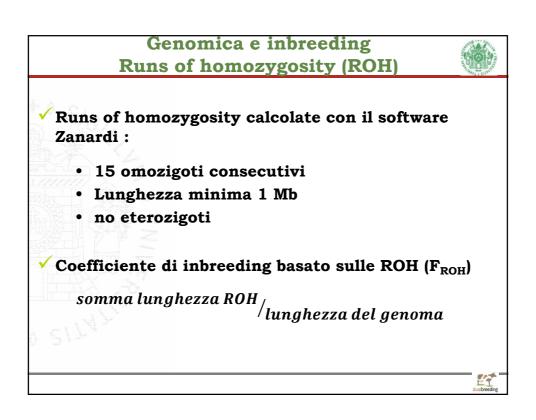

- √ chip HD contenente 139,381 marcatori
- √ scostamento dall'equilibrio di Hardy-Weinberg
- √ frequenza dell'allele minore (0.05)
- √ call rate sui marcatori (0.95)
- √ call rate sugli animali (0.95)

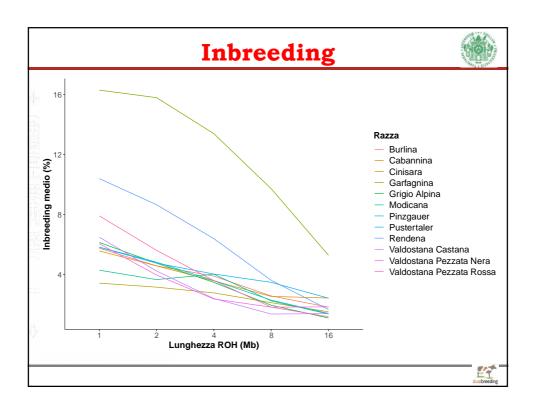

105,869 SNP

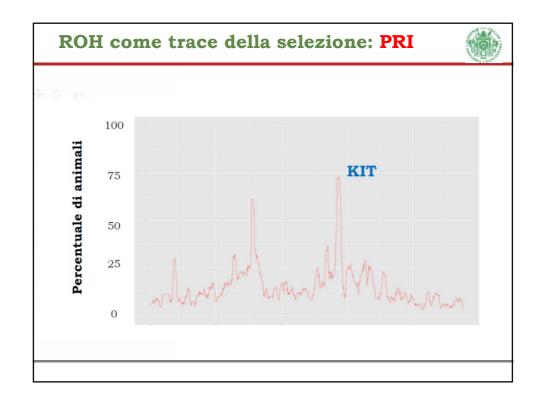




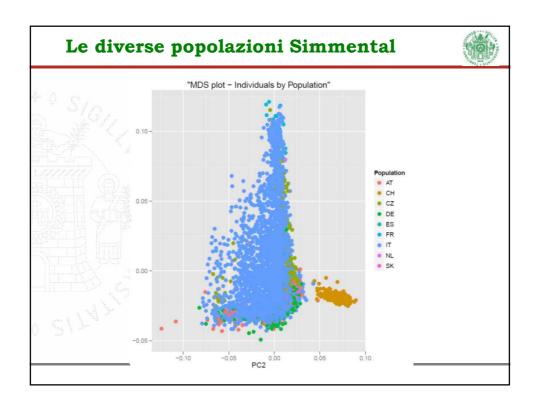








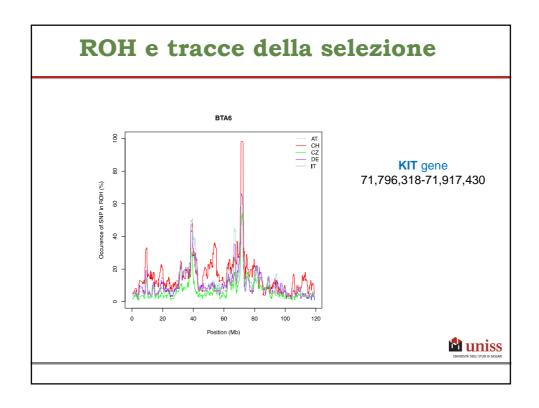
Statistiche delle ROH								
		ROH/aı		Lunghezza (SN		Lunghezza	(Mb)	
	Razza	media	max	media±DS	max	media±DS	max	
	AGE	37.29	70	161±193	1533	3.96±4.76	35.9	
	BUR	45.43	83	143±165	2053	3.49±4.01	52.22	
	CAB	42.03	104	175±230	2736	4.27±5.49	58.58	
	CIN	27.23	163	129±150	2040	3.16±3.55	43.48	
	GA	48.17	74	123±144	1667	3.21±3.43	41.68	
	GAR	81.47	151	208±221	2157	5.04±5.38	51.00	
	MOD	39.8	123	112±125	1765	2.77±2.94	45.74	
	PRI	60.4	153	76±51	626	1.91±1.18	15.95	
	PUST	42.88	129	141±185	2376	3.44±4.45	59.55	
	PZG	41.19	91	148±163	1852	3.58±3.92	47.47	
	REG	36.73	51	170±193	1752	4.12±4.75	44.22	
	REN	69.53	101	154±160	2022	3.72±3.89	50.29	
	VCAS	67.07	109	98±105	1742	2.44±2.5	44.16	
	VPN	65.92	109	99±108	2192	2.46±2.6	58.31	923
	VPR	71.84	95	113±124	1480	2.78±2.97	36.52	dualbreed

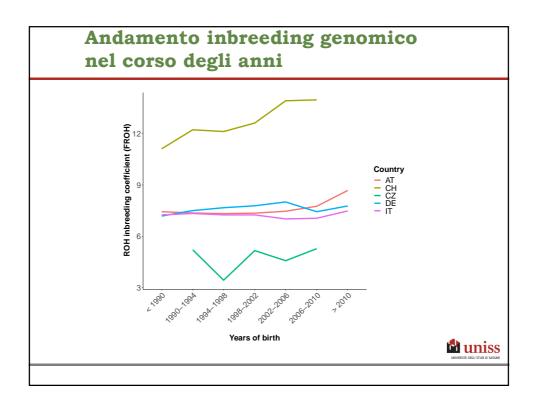

Genomica e analisi delle differenze entro razza: la popolazione Simmental

\checkmark 3,845 tori da 5 paesi:

- Austria (AT, 351)
- Svizzera (CH, 215)
- Repubblica ceca (CZ, 248)
- Germania (DE, 550)
- Italia (IT, 2481)

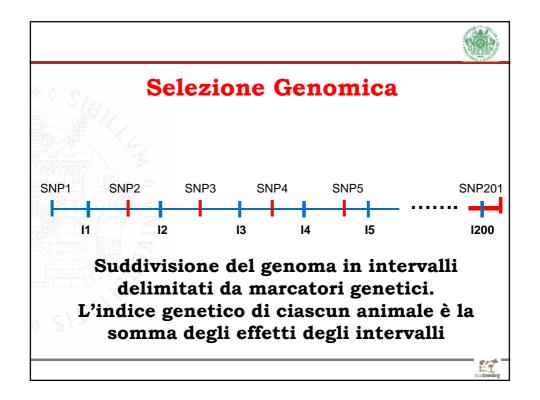
uniss Università degli studi di sassari




Risultati: caratteristiche delle ROH

		Lughezz	a media ROH
Paese	nROH	Mb	SNP
AT	76.1±14.9	2.5±3.3	38.65±47.88
СН	109.9±11.2	3.0 ± 3.8	45.51±56.93
CZ	52.2±12.9	2.3 ± 3.3	34.30±47.24
DE	77.8±15.1	2.5 ± 3.5	38.46±47.19
ΙT	73.1±14.7	2.6±3.6	39.12±51.55

77.8±20.7 ROH per animale



Considerazioni

- ✓ L'uso della genomica consente di apprezzare differenze nella gestione genetica delle diverse popolazioni
- ✓ Limitato o nullo utilizzo di tori stranieri in Svizzera
- ✓ Scambi di seme tra Austria, Germania, e Italia
- ✓ La Cecoslovacchia ha una elevata popolazione effettiva ed soggetta ad incorci con alter razze (Red Holstein, Ayrshire, Montebeliard), sino al 1980 animali CZ erano cosiderati come incroci

Diagnosi di parentela

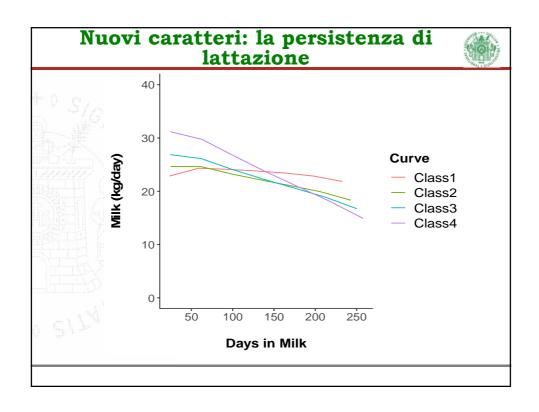
- File di Pedigree
- File dei genotipi
- Diagnosi parentela
- Ricerca probabili genitori

SCHEMA DELLA SELEZIONE GENOMICA

Popolazione di riferimento

Selezione genomica nella PRI

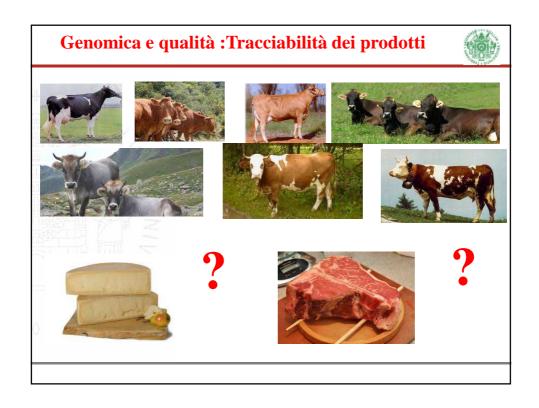
2009 Progetto SELMOL:

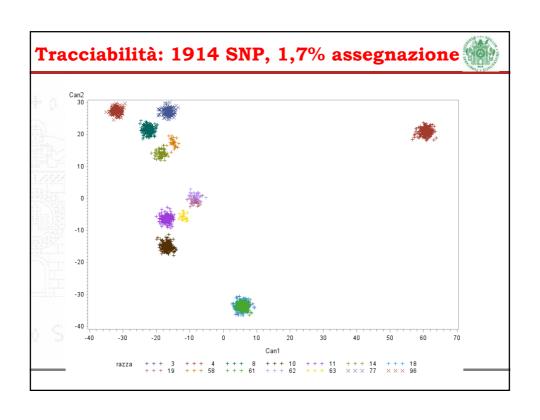

- ✓Genotipizzazione tori nazionali
- ✓Sviluppo procedura di valutazione genomica
- **2011** Validazione test INTERBULL
- **2014** Inizio progetto ONESTEP
- 2019 Nuovi caratteri

Vantaggi GS verso la selezione tradizionale

Carattere	R^2_{DGV}	${\bf R^2_{IP}}$	DIFF
Latte kg	0.39	0.15	+0.24
Grasso kg	0.40	0.24	+0.15
Proteina kg	0.40	0.20	+0.20
Grasso %	0.25	0.33	-0.08
Proteina %	0.36	0.39	-0.03

Stima dei parametri genetici


	Interparto	Latte kg	Grasso kg	Proteina kg
Interparto	0.09	0.17	0.15	0.16
Latte kg	0.64	0.26	0.88	0.96
Grasso kg	0.63	0.86	0.25	0.89
Proteina kg	0.56	0.95	0.90	0.22


			Correlazione		
	Ereditabilità	Ripetibilità	Fenotipica	Genetica	
Interparto	0.05	0.11	-0.05	0.25	
Persistenza	0.11	0.20	-0.05		

Accuratezze valori genomici

Categoria	Fenotipo	Genotipo	Animali	Media	SD
Vacche	Yes	No	103,239	0.57	0.07
	Yes	Yes	1,693	0.68	0.03
Madri	No	No	69,051	0.42	0.15
	No	Yes	270	0.65	0.06
	Yes	No	50,690	0.61	0.05
	Yes	Yes	767	0.71	0.03
Tori	No	No	6,332	0.49	0.17
	No	Yes	1,458	0.81	0.11

Considerazioni finali

Genomica e razze a duplice attitudine

- Fonte importante di informazione
- Studio della variabilità tra ed entro razze
- ➤ Controllo parentela
- ➤ Gestione genetica delle piccole popolazioni

Considerazioni finali - bis

- ➤ Tare genetiche
- ➤ Selezione genomica
 - >Fenotipi?
 - >Nuovi caratteri?
- ➤Tracciabilità delle produzioni

